Semantic data documentation for FAIR data

Jesper Friis, Francesca L. Bleken (SINTEF)

FAIRification workshop

St. Gallan, January 14, 2025

THE PINK PROJECT HAS RECEIVED FUNDING FROM THE EURO-PEAN UNION'S HORIZON EUROPE RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO. 101137809. ASSOCIATED PARTNERS (I.E. (A) SWISS PARTNERS AND (B) UK PARTNERS) HAVE RECEIVED NATIONAL FUNDING FROM (A) THE SWISS STATE SECRETARIAT FOR EDUCATION, RESEARCH AND INNOVATION (SERI), AND (B) INNOVATE UK.

From raw data to knowledge exploitation

>PINK

Levels of data documentation

ΡΙΝΚ

Provides: findability and accessibility

Also, makes data usable

Important to use **common standards** to make our data findable and accessible for external consumers

Datasets are central for cataloguing

DCAT DCAT-AP (European, adds additional requirements)

DCAT Application Profile (DCAT-AP)

Structural documentation – structure of data

Provides: interoperability (at low/numerical level)

Datamodel										
Identity (uri):		http://onto-ns.com/meta/matchmaker/0.1/SEMImage								
Description:		SEM image with elemental mappings. Represented as								
Dimensions										
Name		Description								
nelements		Number of elements for elemental mapping.								
height	ght Nun		Number of pixels along image height.							
width	Num		umber of pixels along image width.							
Properties										
Name	Туре		Shape	Unit	Description					
data	float32		[nelements+1, height, width]		Image data					
elements	string		[nelements]		Chemical symbols of elements for elemental mapping					
pixelwidth	float64			m	Width of each pixel					
pixelheight	float64			m	Height of each pixel					
metadata	ref http:///0.1/SEM				Ref. to data model for SEM metadata					

Formalised data models used to describe the structure of datasets

Contextual documentation \rightarrow knowledge base

Provides: context (reusability)

Express relations between different documented resources

Contextual documentation \rightarrow knowledge base

Palette of basic relations between different types of resources (datasets, materials, properties, models...)

Semantic documentation \rightarrow autonomous systems

Provides: actionable data

What is the documented resource

Represent datasets the way you need them

Mapping datamodels to ontological concepts

Convert between representations

Enhances

- findability (semantic search)
- interoperability (semantic interoperability, cross-domain interoperability)
- reusability

>PINK

Semantic documentation \rightarrow autonomous systems

System that automatically can combine datasets

Knowledge exploration

Use the knowledge graph to explore how to get from A to B

Example: The OntoFlow workflow builder in OpenModel

>PINK

Tooling

tripper.datadoc

Tripper subpackage for data documentation

Interfaces

- Python API
- Command-line tool
- Web interface (SOFT Studio)

Documentation input

- Python dict
- YAML file
- CSV file
- Excel
- Web form

A lightweight data-centric framework for semantic interoperability

Formalised datamodels

For structural documentation and interoperability

			Datamode					
Identity (uri):		http://onto-ns.com/meta/matchmaker/0.1/SEMImage						
Description:		SEM image with elemental mappings. Represented as						
			Dimensions					
Name		Description						
nelements		Number of elements for elemental mapping.						
height		Number of pixels along image height.						
width		Number of pixels along image width.						
Properties								
Name	Туре		Shape	Unit	Description			
data	float32		[nelements+1, height, width]		Image data			
elements	string		[nelements]		Chemical symbols of elements for elemental mapping			
pixelwidth	float64			m	Width of each pixel			
pixelheight	float64			m	Height of each pixel			
metadata ref		0.1/SEM			Ref. to data model for SEM metadata			

Data provider

- Document and make **existing** datasets accessible
- Ex: experimentalist/characterisation instrument, modeller, ...
- Data user
 - Access and use **existing** (documented) data
- Data consumer
 - Document what type of data is needed (the data may not exist (yet))
 - Ex: model (input)
- Data producer
 - Document what type of data is produces (the data may **not** exist (yet))
 - Ex: model (output)

>PINK

Data user

- Find data
 - search criteria \rightarrow IRI of matching resources
- Access data
 - provide the IRI
 - \rightarrow raw data
 - provide IRI(s) + description of how the data should be represented \rightarrow data represented the way you want it
- Do not have to add any documentation to the knowledge base

- Python

datadoc tool (web interface)

- Data documentation framework
 - enable knowledge exploitation
 - support all levels of data documentation
 - cataloguing
 - structural documentation
 - contextual documentation
 - semantic documentation
 - supported user roles
 - data provider (document existing data)
 - data user (access and use existing documented data)
 - data consumer (ex: model input...)
 - data producer (ex: model output...)
 - Software packages: Tripper, DLite, SOFT Studio (to be implemented in PINK)

THANK YOU!

Acknowledgement:

This work has received funding from the *European Union's Horizon 2020 research and innovation programme* and Norwegian Research Council via the following projects:

- OntoTrans (2020-2024) Grant Agreement n. 862136
- SFI PhysMet (2020-2028) Research Council of Norway n. 309584
- OpenModel (2021-2025) Grant Agreement n. 953167
- NanoMECommons (2021-2025) Grant Agreement n. 952869
- MatCHMaker (2022-2026) Grant Agreement n. 101091687
- PINK (2024-2028) Grant Agreement n. 101137809

WWW.PINK-PROJECT.EU

THE PINK PROJECT HAS RECEIVED FUNDING FROM THE EURO-PEAN UNION'S HORIZON EUROPE RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO. 101137809. ASSOCIATED PARTNERS (I.E. (A) SWISS PARTNERS AND (B) UK PARTNERS) HAVE RECEIVED NATIONAL FUNDING FROM (A) THE SWISS STATE SECRETARIAT FOR EDUCATION, RESEARCH AND INNOVATION (SERI), AND (B) INNOVATE UK.

Herfra er det bare gamle slides

PINK ontology meeting - Feb. 8, 2024

Important when combining different ontologies (often needed for inter-disciplinary problems)

Ontological alignment

Mapping functions can also be used for ontological alignment

Contextual documentation

Provides: context (reusability)

What is documented

Data provider

- Document and make **existing** datasets accessible
- Ex: experimentalist/characterisation instrument, modeller, ...

Data user

- Access and use existing (documented) data
 - get data as is
 - get standardised data (allows conversions)
 - get semantic data (

Data consumer

- Document what type of data is needed (the data may **not** exist (yet))
- Ex: model (input)

• Data producer

PINK ontology meeting - Feb. 8, 2024
Document what type of data is produces (the data may not exist (yet))

Overview

- Introduction to FAIR data documentation
- Ontologies
- Implementation

What is FAIR research data?

ndable Accessible Interoperable R

scientific data

Explore content v About the journal v Publish with us v

nature > scientific data > comment > article

Comment | Open access | Published: 15 March 2016

The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, ... Barend Mons 🖾 + Show authors

Scientific Data 3, Article number: 160018 (2016) Cite this article

784k Accesses | 5453 Citations | 2266 Altmetric | Metrics

An <u>Addendum</u> to this article was published on 19 March 2019

Widely endorsed

- 2016: G20 leaders (at the G20 Hangzhou summit)
- 2016: EU: <u>H2020 Programme: Guidelines on FAIR Data</u> Management in Horizon 2020 Version 3.0
- 2017: Regjeringen: <u>Nasjonal strategi for</u> <u>tilgjengeliggjøring og deling av forskningsdata</u>
- 2018: Association of European Research Libraries
- 2021: UNESCO Recommendation on Open Science

• ...

Important aspects

- Persistent identifiers
- Adequate metadata and documentation
- Clear licenses
- Standards and formats

Box 2 | The FAIR Guiding Principles

To be Findable:

F1. (meta)data are assigned a globally unique and persistent identifier

F2. data are described with rich metadata (defined by R1 below)

F3. metadata clearly and explicitly include the identifier of the data it describes

F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

A1. (meta)data are retrievable by their identifier using a standardized communications protocolA1.1 the protocol is open, free, and universally implementableA1.2 the protocol allows for an authentication and authorization procedure, where necessaryA2. metadata are accessible, even when the data are no longer available

To be Interoperable:

I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

I2. (meta)data use vocabularies that follow FAIR principles

13. (meta)data include qualified references to other (meta)data

To be Reusable:

R1. meta(data) are richly described with a plurality of accurate and relevant attributes

R1.1. (meta)data are released with a clear and accessible data usage license

R1.2. (meta)data are associated with detailed provenance

R1.3. (meta)data meet domain-relevant community standards

Are the FAIR principles sufficient?

General guiding principles

... but the implementation depends on the needs

Ex, data exchange within a single domain or cross-domain

Data Floods

Meaning Crisis

and

Data centricity – structure data around science rather than IT systems

From Semantic arts; https://www.semanticarts.com/

"Data-centric" really means "Concept-centric"

- Structure data around the science (Ben Gardner, AstraZeneca)
- Start with meaning (Dave McComb, Semantic Arts*)
- Start with conceptualisation (Emanuele Ghedini, Univ Bologna, EMMO)
 - Express general scientific and domain knowledge
 - Utilise agreed standards

<u>* https://www.brcommunity.com/articles.php?id=b972</u>

Conceptualisation

The interpretation of the world by someone

Data gets a **meaning** only when the data producer and consumer **share the same conceptualisation**.

This image is just a bunch of pixels, unless interpreted by someone able to recognise that the balls stands for water molecules.

Knowledge Organisation with Semantics

Adapted from: Leo Obrst "The Ontology Spectrum". Book section in of Roberto Poli, Michael Healy, Achilles Kameas "Theory and Applications of Ontology: Computer Applications". Springer Netherlands, 17 Sep 2010.

SINTEF

From data to wisdom

Labels on data (*Information*) and connection between data (*Knowledge*) result from **Conceptualisation**

Insight and Wisdom follow with semantic technologies

Levels of data documentation

... and what aspects of FAIR data they address

35 COSY 2024 Final Event, Nov 11, 2024

0

0

SINTEF

Intermezzo

Ontologies

What is an ontology

Example of axioms:

ClassAssertion(:a :Car) ClassAssertion(:r :Color) ObjectPropertyAssertion(:hasColor :a :r)

Real-world objects

No specific ontological commitment about the meaning of 'real' and 'object' in OWL 2. Relying on common sense.

Benefits of Ontologies

- Enhanced knowledge sharing and reusability facilitate reuse across systems and applications
- Enhanced accuracy and **consistency** with formal representation of concepts and relationships
- Enhanced **interoperability** with shared vocabulary and conceptual framework
- Improved search and **discovery** in data source queries with structured representation of knowledge
- Facilitate automated **reasoning** to draw logical inferences based on relationships defined within the ontology

Materials Terminologies, Ontologies and Metadata Status

- Lack of agreed conceptualisation and terminologies (no equivalent to IUPAC Goldbook for Materials: even basic terms such as material vs chemical substance are taxonomically not clear.
- Poor coverage of materials domains in existing ontologies
- Lack of curation infrastructure
- Inconsistent use of TLO concepts when aligning key concepts such as materials property (e.g. quality, disposition etc).
- Low FAIR score of many semantic assets.

Review and Alignment of Domain-Level Ontologies for Materials Science

Anne De Baas, Pierluigi Del Nostro, Jesper Friis, Emanuele Ghedini, Gerhard Goldbeck, Ilaria Maria Paponetti, Andrea Pozzi, Lan Yang, Arkopaul Sarkar, Francesco Antonio Zaccarini and Daniele Toti

https://ieeexplore.ieee.org/document/10296887

Linked Open Data Cloud

Linked data is structured data which is interlinked with other data so it becomes more useful through <u>semantic</u> <u>queries</u>. It builds upon standard <u>Web</u> technologies such as <u>HTTP</u>, <u>RDF</u> and <u>URIs</u>, but rather than using them to serve web pages only for human readers, it extends them to share information in a way that can be read automatically by computers. Part of the vision of linked data is for the <u>Internet</u> to become a global <u>database</u>.^[1] <u>Tim Berners-Lee</u>, director of the <u>World Wide Web</u> <u>Consortium</u> (W3C), coined the term in a 2006 design note about the <u>Semantic Web</u> project.^[2] <u>https://en.wikipedia.org/wiki/Linked_data</u>

The dataset currently contains **1314** datasets with **16308** links

https://www.lod-cloud.net/

Schema.org and also Dbpedia.org

• What do you notice?

ᅶ DBpedia	Browse using •	Formats
-----------	----------------	---------

About: http://dbpedia.org/ontology/

An Entity of Type: Vocabulary, from Named Graph: http://dbpedia.org/resource/classes#, within Data Space: dbpedia.org

This ontology is generated from the manually created specifications in the DBpedia Mappings Wiki. Each release of this ontology corresponds to a new release of the DBpedia data set which contains instance data extracted from the different language versions of Wikipedia. For information regarding changes in this ontology, please refer to the DBpedia Mappings Wiki.

• Same story: Where are materials?

Note: Dbpedia has Chemical Substance class (similar to Schema.org) but nothing about materials

Full Hierarchy

Schema.org is defined as two hierarchies: one for textual property va

This is the main schema.org hierarchy: a collection of types (or "clas than one super-type, here we show each type in one branch of the tree

Challenges for semantic KM of Materials

- Heterogenous terminology is prevalent.
- EOSC Interoperability Framework presents the following challenges: https://eosc-portal.eu/eosc-interoperability-framework
- Lack of common explicit definitions about the terms that are used by user communities
- Lacking common semantic artefacts across communities (e.g., general ontologies that can be shared)

Elementary Multiperspective Material Ontology (EMMO)

- A multidisciplinary effort to develop a standard representational framework for applied sciences.
- Based on physics, analytical philosophy and information technologies.
- Pluralistic approach the world can be described according to different perspectives

Creative Commons CC BY 4.0 license Available on: <u>https://github.com/emmo-repo/EMMO</u>

Representing the World

The EMMO needs to represent all the entities from sub-atomic to the universe.

How do we deal with e.g., composite particles, atoms molecules, materials, phases, solids, mixtures?

From Elementaries to Materials

Seamlessly moving from fundamental constituents to macroscopic objects, including physical phenomena as described by physics.

EMMO 1.0.0 achieves <u>complete</u> <u>multiscale</u> <u>representational capabilities</u>, embracing and relating all entities from elementary particles to continuum, <u>including</u> <u>physical</u> <u>models</u> (e.g. QFT, Schrodinger, classical electrodynamics)

From Elementaries to Materials

Materials are now placed under a taxonomy that is strongly connected with physics concepts, facilitating their multi-scale representation.

PhysicalObject

CompositePhysicalObject

is-a

Matter

EMMO Perspectives

Clear separation between physics-based representation modules (quite complex and based on applied sciences concepts) and generic representation modules (perspectives, used to represent multi-domain and common-sensical concepts).

EMMO top Level

EMMO represent world entities as a **causal network** (a **Direct Acyclic Graph**) of **quantum entities** whose types and interactions are governed by the **Standard Model of Particles**.

(Causality relations are invariants in general relativity)

components.

between their quantum

Radical Physicalism

By E. Ghedini et al.

Then we had to deal with **physical phenomena** describing how particles interacts. We decided to build a causality theory to represent the **Quantum Field Theory** interactions, using **Feynman diagrams** representations.

SINTE

It was amazing to see the theory grew almost naturally, and how easily the Feynman diagrams rules led to a **causal graph representation** of physical phenomena as **Direct Acyclic Graphs** with a **maximal graph dimension of 4**, totally in line with our **four-dimensional** approach.

Figure 1. EMMO's Core Naturalistic Commitments (the arrows stand for dC relations)

EMMO Mereocausality in First Order Logics By E. Ghedini et al.

To go beyond the standard model, we decided to go for the fusion of **mereology** and **causality**, creating a new discipline called **mereocausality**, that has been formalised in First Order Logic.

The adoption of **AGEM** theory also led to the definition of **universe**: the **smallest** and the **largest** entities are described using these 13 axioms.

The EMMO mereocausality theory is **fully capable of representing everything that exist**... but is a bit too detailed for practical usage!!!

al P(x,x)(Parthood: Reflexivity) **a2** $P(x,y) \land P(y,x) \rightarrow x = y$ (Parthood: Antisymmetry) (Parthood: Transitivity) **a3** $P(x, y) \land P(y, z) \rightarrow P(x, z)$ a4 $\neg P(y, x) \rightarrow \exists z (P(z, y) \land \neg O(z, x))$ (Strong Supplementation) **a5** $\exists x(\phi(x)) \rightarrow \exists z(\mathbf{F}\langle \phi(x) \rangle(z))$ (Unrestricted Composition) **a6** $\forall x \exists y (qP(y, x))$ (Atomicity) a7 $\neg C(x, x)$ (*Causality: Irreflexivity*) **a8** $C(x,y) \wedge C(y,z) \rightarrow C(x,z)$ (Causality: Transitivity) a9 $C(x,y) \to dC(x,y) \lor \exists zw(C(x,z) \land dC(z,y) \land dC(x,w) \land C(w,y))$ (Discreteness) (Quantum Causality) a10 $C(x,y) \rightarrow Q(x) \land Q(y)$ all $dC(x,y) \to \exists z((dC(x,z) \lor dC(z,y)) \land y \neq z \land x \neq z)$ (Minimal Causal Structure) a12 dC $(x, y) \wedge dC(x, z) \wedge dC(w, y) \rightarrow dC(w, z)$ (Locality)a13 ITEM(u) (Connected Universe)

 $\mathbf{qP}(x,y) \equiv \mathbf{P}(x,y) \land \mathbf{Q}(x) \quad \mathrm{dC}(x,y) \equiv \mathbf{C}(x,y) \land \neg \exists z (\mathbf{C}(x,z) \land \mathbf{C}(z,y))$

EMMO levels and landscape

Top Level

Mereo-causality Standard Model Perspectives (Data, Persistence, Holistic, Reductionistic, Semiotics,...)

Middle Level

Multi-perspective Domain Reference/Discipline (Metrology, Models, Workflow, Substance,)

Domain Level Domain Ontologies (Battery, Characterisation, Crystallography, ...) Major advance in metrology: Units of measure, Quantities including QUDT, logical

consistency improvements

Foundational paper upcoming

Close to 1.0.0 release

Large effort in battery field. Used across EU battery projects. Fast growing, e.g. battery materials, connecting to CHAMEO characterisation ontology, Alignment with MDO, to connect to OptiMade databases ...

https://github.com/emmo-repo/EMMO

DCAT

schema

based

EMMO

ontology

Battery Interface Genome - Materials Acceleration Platform

Vision of the EMMO ecosystem

EMMO Foundations	Disciplines	Domains	Applications
FOL, TLO	MLO, Metrology, Maths, Chemistry, Data etc	Battery, Characterisation etc	Battery Testing, R&D Data Integration
Univ Bologna and collaborators (CNR,)	Unibo, GCL, SINTEF and collaborators from EU/National Projects	EU/National Projects, Industry Consortia	EU/National Projects, Commercial Projects
Logical consistency, rigour, achieving stable foundation, design principles, documentation, manage releases for TLO, MLO	Widely used concepts, use standards where possible, onion shell approach, consistency, tools for users	Generalisation of applications, Controlled Vocabularies, Domain object props, Domain namespaces	Application case development methodology, data connections, A-box, work with infrastructure and solutions providers
EMMC as useful over-arching legal body, but no legal function. Unibo responsible for TLO/MLO release	EMMO Editors Group (EMMC), coordinate project resources, responsible for releases of Discipline Module, Documentation, Tools	EMMC Task Groups for Domains, ensure stakeholders are involved. Bridging with non-EMMO DLOs, dissemination	Work with Domain TGs, feed requirements up the chain, Commercial Venture: Semantic Materials Ltd (?)

() SINTEF

Technology stack

https://github.com/SINTEF/dlite

https://github.com/EMMC-ASBL/tripper

https://github.com/emmo-repo/EMMO-python

https://github.com/emmo-repo/EMMO

Implementation

Levels of data documentation

... and what aspects of FAIR data they address

55 COSY 2024 Final Event, Nov 11, 2024

0

0

() SINTEF

Cataloguing

How can existing and new data be found and accessed

Backend databases and file archives with the actual data

Cataloguing

How can existing and new data be found and accessed

Backend databases and file archives with the actual data

Contextual documentation

How the datasets relates to other datasets – linked data

Contextual documentation

How the datasets relates to other datasets – linked data

- If we want to be able to explore the relations between datasets, the data catalogue should contain the knowledge graph.
- Graph databases (triplestores) are designed for that.
- DCAT a W3C standard (vocabulary) for data catalogues.
- SPARQL query language for knowledge graphs

Contextual documentation

Extended semantics with the palette of basic relations between datasets, materials, properties, models, ... Some examples

SINTEF

Structural documentation

How data is structured numerically

Datamodel					
Identity (uri):		http://onto-ns.com/meta/matchmaker/0.1/SEMImage			
Description:		SEM image with elemental mappings. Represented as			
Dimensions					
Name Description					
nelements		Number of elements for elemental mapping.			
height		Number of pixels along image height.			
width	Number of pixels along image width.				
Properties					
Name	Туре		Shape	Unit	Description
data	float32		[nelements+1, height, width]		Image data
elements	string		[nelements]		Chemical symbols of elements for elemental mapping
pixelwidth	float64			m	Width of each pixel
pixelheight	float64		m	Height of each pixel	
metadata ref 61 COSY 2024 Fintal Fine fine fine fine fine fine fine fine f			Ref. to data model for SEM metadata		

Simple example – SEM image with elemental mapping

SINTEF

Data cube

Structural documentation

How data is structured numerically

Datamodel					
Identity (uri):		http://onto-ns.com/meta/matchmaker/0.1/SEMImage			
Description:		SEM image with elemental mappings. Represented as			
	Dimensions				
Name	Description				
nelements		Number of elements for elemental mapping.			
height		Number of pixels along image height.			
width		Number of pixels along image width.			
Properties					
Name	Туре		Shape	Unit	Description
data	float32		[nelements, height, width]		Image data
elements	string		[nelements]		Chemical symbols of elements for elemental mapping
pixelwidth	float64			m	Width of each pixel
pixelheight	float64		m	Height of each pixel	
metadata ref 62 COSY 2024 Fihal Evént/OND/& #14 2024			Ref. to data model for SEM metadata		

Serialised as YAML

uri: http://onto-ns.com/meta/matchmaker/0.1/SEMImage description: SEM image with elemental mappings. Represented as a stack of elemental mapping followed by the image formed by the back-scattered electrons (BSE). Set `nelements=0` if you only have the back-scattered image. dimensions: nelements: Number of elements for elemental mapping. height: Number of pixels along the image height. width: Number of pixels along the image width. properties: data: type: float32 shape: [nelements+1, height, width] description: "Image data - a stack of images for each channel" elements: type: string shape: [nelements] description: "The chemical symbols of the element maps." pixelwidth: type: float64 unit: m description: "Width of each pixel." pixelheight: type: float64 unit: m description: "Height of each pixel." metadata: type: ref ref: http://onto-ns.com/meta/characterisation/SEM/0.1/SEM description: "Reference to data model for SEM metadata."

() SINTEF

Structural documentation

How data is structured numerically

	Datamodel			
Identity (uri):	http://onto-ns.com/meta/matchmaker/0.1/SEMImage			
Description:	SEM image with elemental mappings. Represented as			
	Dimensions			
Name	Description			
nelements	Number of elements for elemental mapping.			
height	Number of pixels along image height.			
width	Number of pixels along image width.			

Instance

```
"88ca46ff-8404-48d9-b4b9-2140c6b3bdff": {
"meta": "http://onto-ns.com/meta/matchmaker/0.1/SIMImage",
"dimensions": [3, 2560, 1920],
"properties": {
    "data": [[[...], ...], ...],
    "elements": ["Ca", "Si", "Al", "BSE"],
    "pixelwidth": 0.5e-6,
    "pixelheight": 0.5e-6,
    "metadata": "dcf0d99a-ef85-4efe-afee-bd57fef5ad5f"
```

Properties				
Name	Туре	Shape	Unit	Description
data	float32	[nelements+1, height, width]		Image data
elements	string	[nelements+1]		Chemical symbols of elements for elemental mapping
pixelwidth	float64		m	Width of each pixel
pixelheight	float64		m	Height of each pixel
metadata	ref Fibal/Ev/ent/(N/b/// 20	174		Ref. to data model for SEM

SINTEF

Data cube

Semantic documentation

What is the meaning of the data – map data model properties to ontologies

Semantic documentation: structure & meaning

Semantic interoperability

Get the data in the form you want

SINTEF

Documenting a data source

Documenting a data sink

to other resources

Documenting a data sink

Context via relations to other resources

Data documentation

SINTEF

Thanks

Acknowledgement:

This work has received funding from the *European Union's Horizon 2020 research and innovation programme* and Norwegian Research Council via the following projects:

- OntoTrans (2020-2024) Grant Agreement n. 862136
- SFI PhysMet (2020-2028) Research Council of Norway n. 309584
- OpenModel (2021-2025) Grant Agreement n. 953167
- NanoMECommons (2021-2025) Grant Agreement n. 952869
- MatCHMaker (2022-2026) Grant Agreement n. 101091687
- PINK (2024-2028) Grant Agreement n. 101137809

Summary

Levels of data documentation

... and what aspects of FAIR data they address

Documenting modelling wrappers

Simplified graphical representation

Representing a computation

80

() SINTEF

Representing a computation

Representing a workflow

Representing a workflow

Representing a workflow

Representing a workflow – next step

YAML documentation of a modelling wrapper

version: 1 prefixes: ss3: "http://open-model.eu/ontologies/ss3#" simulation resources: ss3:AbagusSimulation: # Name of the AiiDA plugin to use aiida plugin: execflow.exec wrapper # The command for running the simulation tool command: run abaqus.sh # The commands for installing the wrapper to the simulation tool install command: | pip install git+ssh://git@github.com:H2020-OpenModel/SS3 wrappers.git@master # Documentation of all Abagus ouput: output: # Documentation of all Abagus ouput as source partial pipeline in an oteapi pipeline # Documentation of Abagus input for Aluminium material card ss3:DeformationHistory: - dataresource: mediaType: application/vnd.dlite-parse downloadUrl: abaqus deformation history.txt configuration: driver: plugin abagus output datamodel: http://www.sintef.no/calm/0.1/AbaqusDeformationHistory # Documentation of all Abagus input: input: # Documentation of all Abaqus input to be provided as sink pipeline by an oteapi pipeline # Documentation of Abaqus input for Aluminium material card ss3:AluminiumMaterialCard: - function: functionType: application/vnd.dlite-generate configuration: driver: plugin abagus material # the name of the file is as expected by the Abagus input template location: Section materials al.inp datamodel: http://www.sintef.no/calm/0.1/AluminiumMaterialCard

Documentation for Abadus input for Concrete material card